
Nearest-neighbour spacing distribution of energy levels in the region between integrability and

chaos

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 1

(http://iopscience.iop.org/0305-4470/29/1/004)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 01:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 1–9. Printed in the UK

Nearest-neighbour spacing distribution of energy levels in
the region between integrability and chaos

A Y Abul-Magd
Department of Mathematics and Computer Science, Faculty of Science, United Arab Emirates
University, POB 17551 Al Ain, United Arab Emirates

Received 17 May 1995, in final form 14 September 1995

Abstract. We derive an expression for the level spacing distribution for a quantal system
displaying both regular and chaotic classical motion, assuming that the level-repulsion function
for the mixed system is obtained by averaging the corresponding functions for the regular and
chaotic regimes with weights given by their fractional phase-space volumes. The Liouville
measures of the regular region obtained from comparing this expression with the level spacing
distributions of a hydrogen atom in a uniform magnetic field agree with the corresponding values
obtained in the classical-mechanical analysis of this system.

1. Introduction

It is generally agreed that the statistical properties of energy levels of a quantum-mechanical
system whose classical counterpart is chaotic is well described by random matrix theory [1].
In the case in which there is anti-unitary symmetry, the nearest-neighbour spacing (NNS)
distribution of energy levels of such a system is well approximated by a Wigner distribution:

P(s) = 1
2πse−πs2/4 (1)

provided that the level sequence is normalized to unit mean level spacing. On the other hand,
the NNS distribution of levels of a system whose classical dynamics is rigorous everywhere
in the phase space is well represented by a Poisson distribution

P(s) = e−s (2)

at least for not very large spacings. This conclusion is supported by several numerical
experiments [2–4] as well as theoretical justifications based on semiclassical arguments
[5, 6]. However, not all classical systems are either rigorous or chaotic. Computer studies of
several non-integrable two-dimensional systems demonstrated that they undergo an order-to-
chaos transition (see e.g. [7, 8]). Their classical phase space is mixed in the sense that some
orbits wind regularly round two-dimensional tori and others explore the three-dimensional
energy surface ergodically. In fact, the coexistence of regular and chaotic motion seems to
be the general case, particularly in physical system. For example, while resonance spacings
in neutron and proton scattering by atomic nuclei follow the Wigner distribution [9, 10],
statistical tests of level spacings indicate transitional character between regular and chaotic
regimes [11–13]. Other examples are provided by hydrogen atoms in strong magnetic fields
[14], models of nuclear motion in simple molecules [15] and mesoscopic devices having a
wide range of dynamical features [16].
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The intermediate regime of mixed regular and chaotic dynamics is still a subject of
intense research work. Various formulae have been proposed to fit theNNS distributions for
mixed systems [17–21]. They depend on one parameter (or more), which can be tuned to
interpolate between the limiting cases of regular and irregular spectra. The most popular of
these formulae is the Brody distribution [17]:

P(s) = asβ exp(−bsβ+1) a = (β + 1)b b = [0((β + 2)/(β + 1))]β+1 (3)

which assumes a power-law level repulsion and interpolates between the Poisson(β = 0)

and Wigner(β = 1) distributions in a simple way.
A semiclassical theory for the level spacing of mixed systems has been given by

Berry and Robnik [22] by assuming that the wavefunctions are localized in the ordered
region of the phase space or in the chaotic regions. The energy levels then consist of
separate sequences, one being Poisson distributed and each of the others being Wigner
distributed. The relative weight of each distribution is given by the Liouville measure of
the corresponding phase-space region. When this assumption holds, theNNS distribution in
the case of a single chaotic region is given by

P(s) = e−qs
{
q2 erfc

(
1
2

√
π(1 − q)s

) + (2q(1 − q) + 1
2π(1 − q)3s) exp[− 1

4π(1 − q)2s2]
}
(4)

whereq is the measure of the regular region. Numerical experiments to date have resulted in
NNS distributions [7, 8, 14, 21] consistent with (4) only for level spacingss > 1. Recently,
Prosen and Robnik [23] have shown that the spectral superposition hypothesis certainly
holds only in the deep semiclassical region. In an attempt to extend the validity of (4), they
introduce the two-parameter ‘ultimate’ Berry–Robnik spacing distribution by describing the
irregular levels (with measure 1− q) obey the Brody distribution with someβ which is
supposed to capture the localization of the underlying chaotic states. An extensive discussion
for the effects leading to the departure form the semiclassical description of level statistics
is given by Bohigaset al [24].

Hönig and Wintgen [21] presented numerical-experimental data of high statistical
significance for theNNS distribution of the level spectra of the hydrogen atom in a uniform
magnetic field. Their data included as small spacings ass ≈ 0.001 and nevertheless the
distributions did not show any tendency to vanish ass tended to zero as expected from
Brody’s formula, except in the cases of nearly chaotic spectra. Although the Berry–Robnik
distribution (4) is the only one with a non-vanishing probability for very small spacings,
their agreement with the data of [21] is very poor particularly in the region ofs < 1.
The best fits are obtained with the Brody formula (3) in spite of the fact that the analytic
behaviour is incorrect nears = 0. In our view, this result is rather disappointing since the
Brody interpolation parameterβ does not have an explicit relation to the dynamics of the
system.

In this paper, we propose an expression for theNNS distribution of the energy levels
of a mixed system which depends on a single parameter and might be more suitable for
comparison with experimental data. Our basic assumption is that the level-repulsion function
for a mixed system can be taken as the average of the corresponding functions for the
regular and chaotic systems with averaging weights equal to the measures of the phase-
space domains of regular and chaotic motion, respectively. We find that the values of these
measures obtained from the analysis of spectral fluctuations of the paramagnetic hydrogen
atom [21] are in good agreement with the corresponding values obtained in the classical
analysis.
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The NNS distribution of levels of unit mean spacing can be derived [25] from a simple
probability argument, which results in the following integral equation:

P(s) = r(s)

∫ ∞

s

P (x) dx (5)

wherer(s) is the level-repulsion function defined so thatr(s) ds is the conditional probability
that, given a level at energyE, there is one level in the interval ds provided that there are
no levels in the interval(E, E + s). This equation can be solved by first converting it into
a differential equation which can then be integrated to obtain

P(s) = r(s) exp

[
−

∫ s

0
r(x) dx

]
(6)

where the lower integration limit in the exponent is set equal to zero to makeP(s) ' r(s)

for small values ofs. The cumulative spacing distribution is then given by

W(s) =
∫ s

0
P(x) dx = 1 − exp

[
−

∫ s

0
r(x) dx

]
. (7)

The Poisson distribution (2) can be obtained from (6) by taking

rPoisson(s) = 1 (8)

which is consistent with the fact that, in the regular regime, the conditional probability
density of finding a level in a given spacing interval does not depend on the length of this
interval. On the other hand, the Wigner formula (1) for theNNS distribution of levels of
a time-reversal-invariant chaotic system is obtained by the following choice of the level-
repulsion function:

rWigner(s) = 1
2πs (9)

where the constant factor ensures a unit average level spacing.
Berry [26] has suggested the following derivation of (9). Consider an ensemble of

real HamiltoniansH(R) smoothly parametrized by a set of parametersR = (R1, R2, . . .).
Suppose that at some pointR′ of the parameter space two states|1′〉 and|2′〉 are degenerate
with energyE′ = E, i.e.

H(R′)|1′〉 = E′|1′〉 and H(R′)|2′〉 = E′|2′〉. (10)

If R′ is slightly varied intoR, according to the degenerate perturbation theory, the energy
splits to the first order inR − R′ by

1E(R) = [{H ′
11(R) − H ′

22(R)}2 + 4H ′2
12(R)]1/2 (11)

where

H ′
ij = 〈i ′|H(R) − H(R′)|j ′〉. (12)

At a degeneracy1E = 0, which implies the following two independent conditions on the
matrix elements ofH :

H ′
11(R) = H22(R) and H ′

12(R) = 0. (13)

These conditions can be satisfied only if the Hamiltonian depends on at leastn = 2
parameters. For a system with parametersR with NNS defined so as to have an average
value unity, theN th spacing is given by

sN = [EN+1(R) − EN(R)]
dN(EN, R)

dEN

(14)
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whereN(E, R) denotes the smooth number of levels belowE. Berry assumes ergodicity to
replace the energy average by ensemble averaging (over parameters R). TheNNS distribution
is then defined as

P(s) = 〈δ(s − sN(R)〉R (15)

where〈〉R denotes ensemble averaging. The cumulative spacing distribution, defined by the
integration ofP(s) from 0 to s, will then be equal to the volume of the fraction of the
parameter space in whichsN(R) 6 s. Thus, for small values ofs,∫ s

0
P(x) dx ∝ s2 (16)

which implies that, ass → 0,

P(s) ∼= r(s) ∝ s. (17)

Berry’s parameter-space method has also been applied to describe systems without
time-reversal symmetry [26]. These systems have to be described by an ensemble of
Hermitian Hamiltonians having complex non-diagonal matrix elements. Equations (13)
will then impose three conditions. The corresponding parameter space will be at least
three-dimensional and the level-repulsion function will be quadratic. The same arguments
can also be used to describe regular systems. In this case, small perturbations do not
remove degeneracies and conditions (13) do not apply so that an ensemble of one-parameter
Hamiltonians can be used to describe a regular system. However, we cannot see any way
to use similar arguments to obtain a level-repulsion function proportional to a non-integer
power ofs as required to obtain Brody’s interpolation formula (3).

In order to apply Berry’s method to mixed system, we recall the representation of
the transition from integrability to chaos in terms of the Poincaré surfaces of section, e.g.
in the case of a hydrogen atom in a uniform magnetic field [14]. In the absence of the
magnetic field the motion is confined to tori and the surface of section will simply give
continuous loops representing quasiperiodic rotational and vibrational motion. Introducing a
weak field does not change the surface of section although the motion is, strictly speaking,
not confined to tori. Indeed, tori having a rational winding number are replaced, even
under an infinitesimal perturbation, by a stablen-cycle embedded in a stochastic layer.
However, the widths of the layers are infinitesimally small and hence invisible near the
integrable limit. As we increase the scaled energy (see (21) below) irregular motion first
appears near the separatrix transforming it into a stochastic layer. As we further increase
the scaled energy, this layer increases in size whereas the large islands related to regular
motion become smaller and finally almost disappear. We try to apply the previous scenario
to the stochastic transition of a bound quantum system. The energy spectrum of a regular
quantum system has the property of level clustering. We may expect that, in general,
introducing a weak perturbation does not change this property, although, strictly speaking,
any infinitesimal perturbation will result in removing the degeneracies. However, the shifts
in the energy levels are infinitesimally small and hence invisible near the integrable limit.
As we increase the perturbation, the level shift will increase but by different amounts in
different parts of the spectrum. We now follow Percival’s semiclassical classification of
states of a bound quantum system into regular and chaotic classes, each related in some
sense to the corresponding domain in the classical phase space [27]. We assume that the
two classes have different feelings for the perturbation; the integrable class will keep the
property of level clustering (within a resolution defined, e.g., by the width of the step of
the NNS distribution histogram) while the chaotic states will be non-degenerate. In other
words, if the wavefunction of a regular state is expanded in terms of the eigenstates of the
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integrable term of the Hamiltonian, only one (of very few) of the expansion coefficients
will have a significant magnitude. On the other hand, the chaotic states will be delocalized
in the unperturbed basis [20]. This picture can be justified by referring to the shell-model
calculation carried out by Meridithet al [28] using the three-orbital Lipkin–Meshkov–Glick
model [29]. These authors calculated the distribution functions for the overlap coefficients
of the eigenfunctions of the model with a set of basis. For a typical member of the
Gaussian orthogonal ensemble (GOE), the overlap is a Gaussian random variable [25]. For
an integrable system, the distribution has a few very large overlaps and many very small
overlaps (in keeping with the normalization condition). The resulting overlap distributions
for all dynamical classes in the transitional region between regularity and chaos showed
the same qualitative behaviour: an excess of very small overlaps and very large overlaps
relative to a Gaussian distribution. This finding may be interpreted as indication for the
coexistence of almost-regular and almost-chaotic states in a system in the integrability-chaos
transition regime.

Berry’s parameter-space description can now be introduced by assuming that the mixed
system can be described by a combination of two ensembles. The first is an ensemble
of one-parameter Hamiltonians which describes the regular states while the second is an
ensemble of Hamiltonians depending on two parameters at least. The number of members of
each ensemble is proportional to the corresponding classical phase-space volume. Following
arguments similar to those leading to (17), we obtain

r(s) = qrPoisson(s) + (1 − q)rWigner(s) (18)

whereq is the fractional volume of the regular phase-space domain. Substituting (8), (9)
and (18) into (6), we finally obtain

P(s) = [q + 1
2π(1 − q)s] exp[−qs − 1

4π(1 − q)s2]. (19)

We hope that this expression will be useful for the analysis of theNNS distribution of the
energy levels of natural mixed systems such as hydrogen atoms in magnetic fields and
nuclei at low excitation energies, for whichP(s) 6= 0. It does not vanish ats = 0 as
Brody’s formula. It interpolates in a simple way between the Wigner(q = 0) and the
Poisson distributions. It has a similar behaviour at larges as the Berry–Robnik formula (4).
Moreover, it yieldsP(0) = q which is smaller than the value ofP(0) = q(2− q) obtained
from (4). Therefore, it will probably be more capable of producing the minimum at small
spacings of theNNS distributions observed for systems with intermediate values ofq.

We note that the assumption (18) leads to a value of the mean spacing slightly larger
than unity whenq 6= 0 or 1. It is thus necessary to normalize the energy scale to ensure
that the mean level spacing is unity. Replacings by ε/D and definingD by requiring that∫ ∞

0 sP (s) ds = 1, we obtain

1

D
= exp(a2)√

1 − q2
erfc(a) a = q

/√
π(1 − q). (20)

Using (20), we find thatD starts from a value of 1 atq = 0, increases with increasingq,
reaches a maximum value of 1.06 atq = 0.67 and then decreases and returns to the value
1 at q = 1. We thus conclude that the normalization of the energy scale in equation (19)
does not lead to appreciable modification of theNNS distribution.

2. Comparison with numerical experiment

Wintgen and collaborators [14, 21, 28] carried out a detailed study of the classical- and
quantum-mechanical properties of the hydrogen atom in a uniform magnetic field. The
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classical dynamics of this system does not depend on energyE or magnetic field strength
γ (expressed in atomic units) separately, but depends only on the scaled energy

ε = Eγ −2/3. (21)

These authors showed by calculating the Poincaré surfaces of section that the classical
system displayed a smooth transition from regularity to chaos as the parameterε increased
from −0.8 to −0.1. Then, they solved the Schrödinger equation for fixed values of the
scaled energyε and obtained a large-scale spectrum for each value. The total number of
levels in a case varied from 2980 forε = −0.10 to 12 800 forε = −0.40. The high
statistical significance of these data invited us to use them to check the quality of theNNS

distribution proposed in the previous section.
The cumulative spacing distribution obtained by integrating (19) from 0 tos takes a

particularly simple form:

W(s) = 1 − exp[−qs − 1
4π(1 − q)s2]. (22)

In particular, the quantity ln[1−W(s)] becomes a linear expression inq whenW(s) is given
by (22). We calculatedq for each point of the cumulative spacing distributions reported in
[21] and took the average for each of these distributions. Table 1 lists the average values
of q, with their standard deviations taken as measures of errors, for seven values of the
scaled energy. The corresponding valuesqcl of the fractional volume of the domain of
regular motion of the classical phase space are also given in table 1. The table shows
that the estimates for the measure of the classical phase-space domain of regular motion,
obtained from the analysis of the cumulative spacing distributions, are in good agreement
with the corresponding values obtained in the classical analysis. An exception is the case
of ε = −0.3 which does not show the typical dependence of the distributions on the scaled
energy, as pointed out by Hönig and Wintgen [21].

Table 1. Fractional volumeqcl of the regular classical phase space andq values obtained by
fitting cumulative spacing distribution to (22) together withqBR obtained in [30] by fitting the
NNS distribution to the Berry–Robnik formula (4).

ε qcl q qBR

−0.10 0.00 0.02± 0.02 0.00
−0.15 0.04 0.03± 0.02
−0.20 0.12 0.08± 0.02 0.09
−0.25 0.16 0.20± 0.03
−0.30 0.24 0.14± 0.03 0.35
−0.35 0.40 0.37± 0.08
−0.40 0.66 0.58± 0.09 0.60

Figure 1 shows a comparison between the cumulative distributions calculated by means
of (22) with those of the numerical experiment [21]. The agreement between the two sets
of distributions is quite satisfactory, noting that the curves are represented in a logarithmic
scale. Exceptions are in the region of spacings in whichW(s) < 10−3 where the results
of the numerical experiment are of less statistical significance. Figure 2 compares theNNS

distributions calculated using (19) and these are shown as full curves, with the histograms of
the level spacings of a hydrogen atom in a magnetic field given in [28] and the predictions
of the Berry–Robnik formula shown as dotted curves. It is clear from the figure that the
proposed formula for the level-distribution provided a good representation for the histogram
again except for the case ofε = −0.30 which does not conform to the general trend. It



Level-spacing distribution 7

gives a better description of the numerical experiment than the Berry–Robnik formula in
the region of small spacings, otherwise the two formulae are almost equivalent.

Figure 1. Comparison between the cumulative spacing distributions calculated from (22) and
those reported in [21].

3. Summary and conclusions

We have obtained a simple expression for theNNS distribution of the energy levels of a
quantum system whose classical dynamics is a mixture of regular and chaotic motion. It
contains one parameter, which is assumed to be equal to the fractional volumeqcl of the
regular domain of the classical phase space of the system. The derivation of this expression
is based on Percival’s classification scheme that separates the eigenstates into regular and
chaotic groups. Each group is described by an ensemble of Hamiltonians in their parameter
space. Following the arguments suggested by Berry leads to a level-repulsion function,
which coincides with theNNS distribution at small spacings, as a superposition of two
terms describing the two types of dynamics and having weights given by the corresponding
volumes of the classical phase space.

We have compared the proposed expressions for theNNS distribution (equation (19))
and the cumulative spacing distribution (equation (22)) with the numerical calculations of
the energy levels of a hydrogen atom in a uniform magnetic field reported by Wintgenet
al. The results of the comparison, shown in figures 1 and 2, suggest that these expressions
provide a reasonable description of the level distribution. In particular, the predictions of
(19) are in agreement with those of the Berry–Robnik formula ats > 1 but provide a better
description of the numerical experiment at small spacings. Perhaps the most important
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Figure 2. Comparison between the NNS distributions calculated from (19) and represented by
full curves with those reported in [30] where the histograms are the results of the numerical
experiment and the dotted curves are the predictions of the Berry–Robnik formula (4).

conclusion which can be drawn from this comparison is the close agreement between the
values of the fractional phase-space volume of the domain of regular motion extracted from
the analysis of spectra and the corresponding values obtained from the classical-mechanical
analysis.

We finally note the proposed formula does not apply to the specific quantum chaotic
systems recently considered by Zakrewskiet al [31]. Among these systems is the hydrogen
atom in a magnetic field (along thez-axis) near the ionization threshold. In this case, the
electron can explore the region in the phase space very far of the nucleus where the Coulomb
potential 1/

√
ρ2 + z2 ∼= 1/|z|, leading to an adiabatic separation of motion along theρ−

and z-coordinates. Then, the coupling between variousnz Rydberg series associated with
different nρ may not be strong enough to mix the various series and allow the occurrence
of chaotic states.
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